Adding some more judges, here and there.
[and.git] / UVa / 11448 - Who said crisis / 11448.cpp
blob92529ee635e61dca5b6ae15b6e2fdf126b600ce6
1 /**
2 * Big integer class, optimized for decimal integers.
3 * Stores and manipulates integers represented as byte arrays,
4 * where each byte is a decimal digit. If you're looking for
5 * robust, bug-free, efficient code, keep looking. This is a quick
6 * and dirty hack. Some day I'll write a templatized BigInt, where
7 * you will be able to select the base in which to store the
8 * number. When that day comes, most of this code will be thrown
9 * away.
11 * BUGS:
12 * operator-(int) does not work.
14 * BigInt doesn't play nice with long long. Either use int
15 * or string.
17 * INVARIANTS:
18 * - capacity is never smaller than 16
19 * - capacity is not the smallest it can be because every
20 * modifying member function first grows digits as much as
21 * it might ever need and then does its job.
22 * FIELD TESTING:
23 * - Passed numerous problems on Valladolid, including
24 * 107, 288, 324, 424, 465, 485, 495, 560, 619, 623, etc.
26 * COMPATIBILITY:
27 * - This class was written for the g++ compiler and uses some
28 * of the g++ extensions (like "long double" and the ">?="
29 * operator). If you want to compile this under Micro$oft's
30 * "compiler", I don't want to talk to you.
32 * LAST MODIFIED: October 5, 2005
34 * This file is part of my library of algorithms found here:
35 * http://www.palmcommander.com:8081/tools/
36 * LICENSE:
37 * http://www.palmcommander.com:8081/tools/LICENSE.html
38 * Copyright (c) 2002-2004
39 * Contact author:
40 * igor at cs.ubc.ca
41 **/
43 #include <stdio.h>
44 #include <string.h>
45 #include <string>
46 #include <iostream>
47 #include <sstream>
48 #include <math.h>
50 using namespace std;
52 #ifndef min
53 #define min(x,y) ((x) < (y) ? (x) : (y))
54 #endif
56 #ifndef max
57 #define max(x,y) ((x) > (y) ? (x) : (y))
58 #endif
60 class BigInt
62 private:
63 char *digits;
64 int size; // number of used bytes (digits)
65 int capacity; // size of digits
66 int sign; // -1, 0 or +1
68 public:
69 /** Creates a BigInt with initial value n and initial capacity cap **/
70 BigInt( int n, int cap );
72 /** Creates a BigInt with initial value n **/
73 BigInt( int n );
75 /** Creates a BigInt with initial value floor( d ) **/
76 BigInt( long double d );
78 /** Creates a BigInt with value 0 **/
79 BigInt();
81 /** Creates a BigInt by reading the value from a string **/
82 BigInt( string s );
84 /** Creates a BigInt by reading the value from a C string **/
85 BigInt( const char s[] );
87 /** Copy constructor **/
88 BigInt( const BigInt &n );
90 /** Assignment operators **/
91 const BigInt &operator=( const BigInt &n );
92 const BigInt &operator=( int n );
94 /** Cleans up **/
95 ~BigInt();
97 /** Removes any leading zeros and adjusts the sign **/
98 void normalize();
100 /** Returns the sign of n: -1, 0 or 1 **/
101 static int sig( int n );
103 /** Returns the sign of n: -1, 0 or 1 **/
104 static int sig( long double n );
106 /** Returns the number of decimal digits **/
107 inline int length() { return size; }
109 /** Arithmetic **/
110 BigInt operator++();
111 BigInt operator++( int );
112 BigInt operator--();
113 BigInt operator--( int );
114 BigInt operator-();
115 BigInt operator+ ( int n );
116 BigInt operator+ ( BigInt n );
117 BigInt&operator+=( int n );
118 BigInt&operator+=( BigInt n );
119 BigInt operator- ( int n );
120 BigInt operator- ( BigInt n );
121 BigInt&operator-=( int n );
122 BigInt&operator-=( BigInt n );
123 BigInt operator* ( int n );
124 BigInt operator* ( BigInt n );
125 void operator*=( int n );
126 void operator*=( BigInt n );
127 BigInt operator/ ( int n );
128 BigInt operator/ ( BigInt n );
129 void operator/=( int n );
130 void operator/=( BigInt n );
131 int operator% ( int n );
132 BigInt operator% ( BigInt n );
133 void operator%=( int n );
134 void operator%=( BigInt n );
135 int divide( int n ); // Divides storing quotient in *this and returning the remainder
136 BigInt divide( BigInt n ); // Divides storing quotient in *this and returning the remainder
137 BigInt operator* ( long double n ); // Multiplies by a double and truncates (always under-estimates!)
138 void operator*=( long double n ); // Multiplies by a double and truncates (always under-estimates!)
140 /** Bitwise arithmetic **/
141 BigInt operator<< ( int n );
142 void operator<<=( int n );
143 BigInt operator>> ( int n ); // Works differently for negative numbers
144 void operator>>=( int n ); // Works differently for negative numbers
146 BigInt operator& ( int n );
147 BigInt operator& ( BigInt n );
148 void operator&= ( int n );
149 void operator&= ( BigInt n );
150 BigInt operator| ( int n );
151 BigInt operator| ( BigInt n );
152 void operator|= ( int n );
153 void operator|= ( BigInt n );
154 BigInt operator^ ( int n );
155 BigInt operator^ ( BigInt n );
156 void operator^= ( int n );
157 void operator^= ( BigInt n );
158 BigInt operator~();
160 /** Concatenation ;-) **/
161 BigInt operator,( int n );
162 BigInt operator,( BigInt n );
164 /** Casting **/
165 bool operator!();
166 operator bool();
167 //operator int(); //XXX: Don't do this!!! It takes precedence over operator+(int,BigInt)
168 operator string();
170 /** Comparison **/
171 bool operator<( BigInt n );
172 bool operator>( BigInt n );
173 bool operator==( BigInt n );
174 bool operator<=( BigInt n );
175 bool operator>=( BigInt n );
176 bool operator<( int n );
177 bool operator>( int n );
178 bool operator==( int n );
179 bool operator<=( int n );
180 bool operator>=( int n );
181 int compare( BigInt n );
183 /** Returns the lowest value as an integer (watch out for overflow) **/
184 int toInt();
186 /** Returns the value as a decimal string **/
187 string toString();
189 /** Outputs decimal value to stdout **/
190 void print();
192 /** Outputs the decimal value, with commas **/
193 void printWithCommas( ostream &out );
195 private:
196 /** Expansion **/
197 void grow();
199 /** I/O Friends **/
200 friend istream &operator>>( istream &in, BigInt &n );
201 friend ostream &operator<<( ostream &out, BigInt n );
203 /** Logarithms **/
204 friend long double log2( BigInt x, long double epsilon );
205 inline friend long double log( BigInt x, long double epsilon );
206 inline friend long double log10( BigInt x, long double epsilon );
207 inline friend long double lg( BigInt x, long double epsilon );
208 inline friend long double ln( BigInt x, long double epsilon );
211 BigInt operator+( int m, BigInt &n )
213 return n + m;
216 BigInt operator-( int m, BigInt &n )
218 return -n + m;
221 BigInt operator*( int m, BigInt &n )
223 return n * m;
226 BigInt operator/( int m, BigInt &n )
228 return BigInt( m ) / n;
231 BigInt operator%( int m, BigInt &n )
233 return BigInt( m ) % n;
236 /** Misc **/
237 inline bool isDigit( int c )
239 return( c >= ( int )'0' && c <= ( int )'9' );
242 /** Input/Output **/
243 istream &operator>>( istream &in, BigInt &n ) // FIXME: see inside
245 n.size = 0;
246 n.sign = 1;
247 int sign = 1;
248 int c;
249 while( ( c = in.peek() ) >= 0 &&
250 ( c == ' ' || c == '\t' || c == '\r' || c == '\n' ) )
251 in.get();
252 if( c < 0 || ( c != ( int )'-' && !isDigit( c ) ) )
254 in >> c; // XXX: force in.fail()
255 return in;
257 if( c == ( int )'-' ) { sign = -1; in.get(); }
259 // FIXME: Extremely inefficient! Use a string.
260 while( ( c = in.peek() ) >= 0 && isDigit( c ) )
262 in.get();
263 n *= 10;
264 n += ( c - ( int )'0' );
266 n.sign = sign; //XXX: assign n.sign directly after fixing the FIXME
267 n.normalize();
268 return in;
271 ostream &operator<<( ostream &out, BigInt n ) //FIXME: make more efficient
273 return out << n.toString();
276 BigInt::BigInt( int n, int cap )
278 cap = max( cap, ( int )sizeof( n ) * 8 );
279 capacity = cap;
280 sign = sig( n );
281 n *= sign;
282 digits = new char[cap];
283 memset( digits, 0, cap );
284 for( size = 0; n; size++ )
286 digits[size] = n % 10;
287 n /= 10;
291 BigInt::BigInt( int n )
293 capacity = 1024;
294 sign = sig( n );
295 n *= sign;
296 digits = new char[capacity];
297 memset( digits, 0, capacity );
298 size = 0;
299 while( n )
301 digits[size++] = n % 10;
302 n /= 10;
306 BigInt::BigInt( long double d )
308 capacity = 1024;
309 sign = ( d < 0 ? -1 : d > 0 ? 1 : 0 );
310 d *= sign;
311 digits = new char[capacity];
312 memset( digits, 0, capacity );
313 size = 0;
314 d = floor( d );
315 while( d > 0 )
317 digits[size++] = 0 >? ( int )( ( d - floor( d / 10 ) * 10 ) + 0.5 ) <? 9;
318 d = floor( d / 10 );
322 BigInt::BigInt()
324 capacity = 128;
325 sign = 0;
326 digits = new char[capacity];
327 memset( digits, 0, capacity );
328 size = 0;
331 BigInt::BigInt( string s )
333 capacity = max( ( int )s.size(), 16 );
334 sign = 0;
335 digits = new char[capacity];
336 memset( digits, 0, capacity );
338 istringstream in( s );
339 in >> ( *this );
342 BigInt::BigInt( const char s[] )
344 capacity = max( ( int )strlen( s ), 16 );
345 sign = 0;
346 digits = new char[capacity];
347 memset( digits, 0, capacity );
349 istringstream in( s );
350 in >> ( *this );
353 BigInt::BigInt( const BigInt &n )
355 capacity = n.capacity;
356 sign = n.sign;
357 size = n.size;
358 digits = new char[capacity];
359 memcpy( digits, n.digits, capacity );
362 const BigInt &BigInt::operator=( const BigInt &n )
364 if( &n != this )
366 if( capacity < n.size )
368 capacity = n.capacity;
369 delete [] digits;
370 digits = new char[capacity];
372 sign = n.sign;
373 size = n.size;
374 memcpy( digits, n.digits, size );
375 memset( digits + size, 0, capacity - size );
377 return *this;
380 const BigInt &BigInt::operator=( int n )
382 sign = sig( n );
383 n *= sign;
384 for( size = 0; n; size++ )
386 digits[size] = n % 10;
387 n /= 10;
389 return *this;
392 BigInt::~BigInt()
394 delete [] digits;
397 void BigInt::normalize()
399 while( size && !digits[size-1] ) size--;
400 if( !size ) sign = 0;
403 int BigInt::sig( int n )
405 return( n > 0 ? 1 : ( n == 0 ? 0 : -1 ) );
408 int BigInt::sig( long double n )
410 return( n > 0 ? 1 : ( n == 0 ? 0 : -1 ) );
413 int BigInt::toInt()
415 int result = 0;
416 for( int i = size - 1; i >= 0; i-- )
418 result *= 10;
419 result += digits[i];
420 if( result < 0 ) return sign * 0x7FFFFFFF;
422 return sign * result;
425 string BigInt::toString()
427 string s = ( sign >= 0 ? "" : "-" );
428 for( int i = size - 1; i >= 0; i-- )
429 s += ( digits[i] + '0' );
430 if( size == 0 ) s += '0';
431 return s;
434 void BigInt::print() //FIXME: make more efficient
436 cout << toString();
439 void BigInt::printWithCommas( ostream &out )
441 if( sign < 0 ) out.put( '-' );
442 for( int i = size - 1; i >= 0; i-- )
444 out.put( digits[i] + '0' );
445 if( !( i % 3 ) && i ) out.put( ',' );
447 if( size == 0 ) out.put( '0' );
450 void BigInt::grow()
452 char *olddigits = digits;
453 int oldCap = capacity;
454 capacity *= 2;
455 digits = new char[capacity];
456 memcpy( digits, olddigits, oldCap );
457 memset( digits + oldCap, 0, oldCap );
458 delete [] olddigits;
461 BigInt BigInt::operator++()
463 operator+=( 1 );
464 return *this;
467 BigInt BigInt::operator++( int )
469 return operator++();
472 BigInt BigInt::operator--()
474 operator-=( 1 );
475 return *this;
478 BigInt BigInt::operator--( int )
480 return operator--();
483 BigInt BigInt::operator-()
485 BigInt result( *this );
486 result.sign *= -1;
487 return result;
490 BigInt BigInt::operator+( int n )
492 BigInt result( *this );
493 result += n;
494 return result;
497 BigInt BigInt::operator+( BigInt n )
499 BigInt result( *this );
500 result += n;
501 return result;
504 BigInt &BigInt::operator+=( int n )
506 if( size == capacity ) grow();
508 int nsign = sig( n );
509 if( !nsign ) return *this;
510 if( !sign ) sign = nsign;
511 if( sign == nsign )
513 n *= nsign;
514 int carry = 0;
515 int i;
516 for( i = 0; n || carry; i++ )
518 int dig = n % 10;
519 int newdig = digits[i] + dig + carry;
520 digits[i] = newdig % 10;
521 carry = newdig / 10;
522 n /= 10;
524 size = max( i, size );
526 else operator-=( -n );
527 return *this;
530 BigInt &BigInt::operator+=( BigInt n )
532 int maxS = max( size, n.size ) + 1;
533 while( maxS >= capacity ) grow(); //FIXME: this is stupid
535 if( !n.sign ) return *this;
536 if( !sign ) sign = n.sign;
537 if( sign == n.sign )
539 int carry = 0;
540 int i;
541 for( i = 0; i < maxS - 1 || carry; i++ )
543 int newdig = carry;
544 if( i < size ) newdig += digits[i];
545 if( i < n.size ) newdig += n.digits[i];
546 digits[i] = newdig % 10;
547 carry = newdig / 10;
549 size = max( i, size );
551 else
553 n.sign *= -1;
554 operator-=( n );
555 n.sign *= -1;
557 return *this;
560 BigInt BigInt::operator-( int n )
562 BigInt result( *this );
563 result -= n;
564 return result;
567 BigInt BigInt::operator-( BigInt n )
569 BigInt result( *this );
570 result -= n;
571 return result;
574 BigInt &BigInt::operator-=( int n )
576 if( size == capacity ) grow();
578 int nsign = sig( n );
579 if( !nsign ) return *this;
580 if( !sign ) sign = 1;
581 if( sign == nsign )
583 BigInt bin = n;
584 if( sign >= 0 && *this < bin || sign < 0 && *this > bin )
586 // Subtracting a bigger number
587 operator=( toInt() - n );
588 return *this;
591 n *= nsign;
592 int carry = 0;
593 int i;
594 for( i = 0; n || carry; i++ )
596 int dig = n % 10;
597 int newdig = digits[i] - dig + carry;
598 if( newdig < 0 ) newdig += 10, carry = -1;
599 else carry = 0;
600 digits[i] = newdig;
601 n /= 10;
603 normalize();
605 else operator+=( -n );
606 return *this;
609 BigInt &BigInt::operator-=( BigInt n )
611 int maxS = max( size, n.size ) + 1;
612 while( maxS >= capacity ) grow(); //FIXME: this is stupid
614 if( !n.sign ) return *this;
615 if( !sign ) sign = 1;
616 if( sign == n.sign )
618 if( sign >= 0 && *this < n || sign < 0 && *this > n )
620 // Subtracting a bigger number
621 BigInt tmp = n;
622 tmp -= *this;
623 *this = tmp;
624 sign = -sign;
625 return *this;
628 int carry = 0;
629 int i;
630 for( i = 0; i < maxS - 1; i++ )
632 int newdig = carry;
633 if( i < size ) newdig += digits[i];
634 if( i < n.size ) newdig -= n.digits[i];
635 if( newdig < 0 ) newdig += 10, carry = -1;
636 else carry = 0;
637 digits[i] = newdig;
639 if( carry ) // Subtracted a bigger number, need to flip sign
641 if( i ) digits[0] = 10 - digits[0];
642 size = ( i ? 1 : 0 );
643 for( int j = 1; j < i; j++ )
645 digits[j] = 9 - digits[j];
646 if( digits[i] ) size = j + 1;
648 sign *= -1;
650 normalize();
652 else
654 n.sign *= -1;
655 operator+=( n );
656 n.sign *= -1;
658 return *this;
661 BigInt BigInt::operator*( int n )
663 BigInt result( 0, size + ( int )sizeof( n ) * 8 );
664 int nsign = sig( n );
665 n *= nsign;
666 result.sign = sign * nsign;
667 if( !result.sign ) return result;
669 int i, j;
670 for( i = 0; n; i++ )
672 int dig = n % 10;
673 if( dig )
675 int carry = 0;
676 for( j = 0; j < size || carry; j++ )
678 int newDig = result.digits[i + j] + ( j < size ? dig * digits[j] : 0 ) + carry;
679 result.digits[i + j] = newDig % 10;
680 carry = newDig / 10;
683 n /= 10;
685 result.size = i + j - 1;
686 return result;
689 BigInt BigInt::operator*( BigInt n )
691 BigInt result( 0, size + n.size );
693 result.sign = sign * n.sign;
694 if( !result.sign ) return result;
696 int i, j;
697 for( i = 0; i < n.size; i++ )
699 if( n.digits[i] )
701 int carry = 0;
702 for( j = 0; j < size || carry; j++ )
704 int newDig =
705 result.digits[i + j] +
706 ( j < size ? n.digits[i] * digits[j] : 0 ) +
707 carry;
708 result.digits[i + j] = newDig % 10;
709 carry = newDig / 10;
713 result.size = i + j - 1;
715 return result;
718 void BigInt::operator*=( int n )
720 operator=( operator*( n ) );
723 void BigInt::operator*=( BigInt n )
725 operator=( operator*( n ) );
728 BigInt BigInt::operator/( int n )
730 if( !n ) n /= n; //XXX: force a crash
732 BigInt result( *this );
733 result /= n;
734 return result;
737 BigInt BigInt::operator/( BigInt n )
739 if( !n ) n.size /= n.size; //XXX: force a crash
741 BigInt result( *this );
742 result /= n;
743 return result;
746 void BigInt::operator/=( int n )
748 divide( n );
751 void BigInt::operator/=( BigInt n )
753 divide( n );
756 int BigInt::operator%( int n )
758 BigInt tmp( *this );
759 return tmp.divide( n );
762 void BigInt::operator%=( int n )
764 operator=( divide( n ) );
767 BigInt BigInt::operator%( BigInt n )
769 BigInt tmp( *this );
770 return tmp.divide( n );
773 void BigInt::operator%=( BigInt n )
775 operator=( divide( n ) );
778 int BigInt::divide( int n )
780 if( !n ) n /= n; //XXX: force a crash
782 int nsign = sig( n );
783 n *= nsign;
784 if( !sign ) return 0;
785 sign *= nsign;
787 int tmp = 0;
788 for( int i = size - 1; i >= 0; i-- )
790 tmp *= 10;
791 tmp += digits[i];
792 digits[i] = tmp / n;
793 tmp -= digits[i] * n;
795 normalize();
796 return tmp;
799 BigInt BigInt::divide( BigInt n )
801 if( !n ) n.size /= n.size; //XXX: force a crash
803 if( !sign ) return 0;
804 sign *= n.sign;
806 int oldSign = n.sign;
807 n.sign = 1;
809 BigInt tmp( 0, size );
810 for( int i = size - 1; i >= 0; i-- )
812 tmp *= 10;
813 tmp += digits[i];
814 digits[i] = 0;
815 while( tmp >= n ) { tmp -= n; digits[i]++; }
817 normalize();
819 n.sign = oldSign;
821 return tmp;
824 // This is only exact to the first 15 or so digits, but it is
825 // never an over-estimate
826 BigInt BigInt::operator*( long double n )
828 // the number of digits after the decimal point to use
829 int DIGS_AFTER_DOT = 15;
831 int nsign = sig( n );
832 n *= nsign;
833 int ndigs = n >= 1 ? ( int )log10( n ) + 1 : 0;
834 BigInt result( 0, size + ndigs );
835 result.sign = sign * nsign;
836 if( !result.sign ) return result;
838 if( n >= 1 ) for( int i = 0; i < ndigs; i++ ) n /= 10;
839 result.size = 0;
841 char afterDot[DIGS_AFTER_DOT + 1];
842 memset( afterDot, 0, sizeof( afterDot ) );
844 // Keep going until the DIGS_AFTER_DOT'th digit after the decimal point
845 for( int i = ndigs - 1; i >= -DIGS_AFTER_DOT; i-- )
847 n *= 10;
848 int dig = ( int )floor( n );
849 n -= dig;
850 if( !dig ) continue;
852 int carry = 0;
853 for( int j = 0; j < size || carry; j++ )
855 int newdig =
856 ( i + j < 0 ? afterDot[-( i + j )] : result.digits[i + j] )
857 + dig * digits[j]
858 + carry;
859 ( i + j < 0 ? afterDot[-( i + j )] : result.digits[i + j] ) = newdig % 10;
860 if( i + j >= 0 && result.digits[i + j] ) result.size >?= i + j + 1;
861 carry = newdig / 10;
864 if( !result.size ) result.sign = 0;
865 return result;
868 void BigInt::operator*=( long double n )
870 operator=( operator*( n ) );
873 BigInt BigInt::operator<<( int n )
875 BigInt result( *this );
876 result <<= n;
877 return result;
880 void BigInt::operator<<=( int n )
882 if( n < 0 ) operator>>=( -n );
883 else if( n > 0 )
885 BigInt mult( 1, 4 * n );
886 for( int i = ( 1 << 30 ); i; i >>= 1 )
888 mult *= mult;
889 if( n & i ) mult *= 2;
891 operator*=( mult );
895 BigInt BigInt::operator>>( int n )
897 BigInt result( *this );
898 result >>= n;
899 return result;
902 void BigInt::operator>>=( int n )
904 if( n < 0 ) operator<<=( -n );
905 else if( n > 0 )
907 BigInt mult( 1, 4 * n );
908 for( int i = ( 1 << 30 ); i; i >>= 1 )
910 mult *= mult;
911 if( n & i ) mult *= 2;
913 operator/=( mult );
917 BigInt BigInt::operator&( int n )
921 BigInt BigInt::operator&( BigInt n )
925 void BigInt::operator&=( int n )
929 void BigInt::operator&=( BigInt n )
933 BigInt BigInt::operator|( int n )
937 BigInt BigInt::operator|( BigInt n )
941 void BigInt::operator|=( int n )
945 void BigInt::operator|=( BigInt n )
949 BigInt BigInt::operator^( int n )
953 BigInt BigInt::operator^( BigInt n )
957 void BigInt::operator^=( int n )
961 void BigInt::operator^=( BigInt n )
965 BigInt BigInt::operator~()
969 BigInt BigInt::operator,( int n )
971 BigInt result( 0, size + ( int )sizeof( n ) * 8 );
972 for( result.size = 0; n; result.size++ )
974 result.digits[result.size] = n % 10;
975 n /= 10;
977 memcpy( result.digits + result.size, digits, size * sizeof( digits[0] ) );
978 result.size += size;
979 result.sign = 1;
980 result.normalize();
981 return result;
984 BigInt BigInt::operator,( BigInt n )
986 BigInt result( 0, size + n.size );
987 memcpy( result.digits, n.digits, n.size * sizeof( n.digits[0] ) );
988 memcpy( result.digits + n.size, digits, size * sizeof( digits[0] ) );
989 result.size = size + n.size;
990 result.sign = 1;
991 result.normalize();
992 return result;
995 bool BigInt::operator!()
997 return !size;
1000 BigInt::operator bool()
1002 return size;
1005 //BigInt::operator int()
1007 // return toInt();
1010 BigInt::operator string()
1012 return toString();
1015 bool BigInt::operator<( BigInt n )
1017 return( compare( n ) < 0 );
1020 bool BigInt::operator>( BigInt n )
1022 return( compare( n ) > 0 );
1025 bool BigInt::operator==( BigInt n )
1027 return( compare( n ) == 0 );
1030 bool BigInt::operator<=( BigInt n )
1032 return( compare( n ) <= 0 );
1035 bool BigInt::operator>=( BigInt n )
1037 return( compare( n ) >= 0 );
1040 bool BigInt::operator<( int n )
1042 return( compare( BigInt( n ) ) < 0 );
1045 bool BigInt::operator>( int n )
1047 return( compare( BigInt( n ) ) > 0 );
1050 bool BigInt::operator==( int n )
1052 return( compare( BigInt( n ) ) == 0 );
1055 bool BigInt::operator<=( int n )
1057 return( compare( BigInt( n ) ) <= 0 );
1060 bool BigInt::operator>=( int n )
1062 return( compare( BigInt( n ) ) >= 0 );
1065 int BigInt::compare( BigInt n )
1067 if( sign < n.sign ) return -1;
1068 if( sign > n.sign ) return 1;
1069 if( size < n.size ) return -sign;
1070 if( size > n.size ) return sign;
1071 for( int i = size - 1; i >= 0; i-- )
1073 if( digits[i] < n.digits[i] ) return -sign;
1074 else if( digits[i] > n.digits[i] ) return sign;
1076 return 0;
1079 long double log2( BigInt x, long double epsilon = 0.000000000000001 )
1081 static /* const */ long double O = 0.0;
1082 if( x.sign <= 0 ) return O / O; // Return NaN
1084 long double y = 0.0, z = 1.0, f = 0.0;
1085 while( x >= 2 )
1087 if( x.divide( 2 ) ) f += 1.0;
1088 f /= 2.0;
1089 y++;
1091 f += 1.0;
1092 while( z > epsilon )
1094 f *= f;
1095 z /= 2.0;
1096 if( f >= 2.0 )
1098 y += z;
1099 f /= 2.0;
1102 return y;
1105 inline long double log( BigInt x, long double epsilon = 0.000000000000001 )
1107 return log2( x, epsilon ) * 0.6931471805599;
1110 inline long double log10( BigInt x, long double epsilon = 0.000000000000001 )
1112 return log2( x, epsilon ) * 0.301029995664;
1115 inline long double lg( BigInt x, long double epsilon = 0.000000000000001 )
1117 return log2( x, epsilon );
1120 inline long double ln( BigInt x, long double epsilon = 0.000000000000001 )
1122 return log( x, epsilon );
1126 int main()
1128 int n;
1129 cin >> n;
1130 while (n--){
1131 string a, b;
1132 cin >> a >> b;
1133 BigInt x(a), y(b);
1134 cout << (x - y) << endl;
1137 cout << "Constructors and copy constructors:" << endl;
1138 cout << "12345000 = " << BigInt( 12345000 ) << endl;
1139 BigInt b = BigInt( 12345000 );
1140 cout << "12345000 = " << b << endl;
1141 BigInt c; c = b;
1142 cout << "12345000 = " << c << endl;
1143 cout << "1234567890 = " << BigInt( ( long double )1234567890.49999 ) << endl;
1144 cout << endl;
1146 cout << "Addition and subtraction:" << endl;
1147 cout << "123 + 234 = " << ( BigInt( 123 ) + 234 ).toInt() << endl;
1148 cout << "243 + 999 = " << ( BigInt( 243 ) + BigInt( 999 ) ) << endl;
1149 cout << "-123 + -321 = " << ( BigInt( -123 ) + BigInt( -321 ) ) << endl;
1150 cout << "-123 + 321 = " << ( BigInt( -123 ) + BigInt( 321 ) ) << endl;
1151 cout << "-2 + 5 = " << ( BigInt( -2 ) + 5 ) << endl;
1152 cout << "-2 + 5 = " << ( BigInt( -2 ) + BigInt( 5 ) ) << endl;
1153 cout << "-2 + -5 = " << ( BigInt( -2 ) + -5 ) << endl;
1154 cout << "-2 + -5 = " << ( BigInt( -2 ) + BigInt( -5 ) ) << endl;
1155 cout << "0 + -5 = " << ( BigInt( 0 ) + -5 ) << endl;
1156 cout << "0 + -5 = " << ( BigInt( 0 ) + BigInt( -5 ) ) << endl;
1157 cout << "4567 - 1234 = " << ( 4567 - BigInt( 1234 ) ) << endl;
1158 cout << "345 - 46 = " << ( BigInt( 345 ) - BigInt( 46 ) ) << endl;
1159 cout << "2 - 6 = " << ( BigInt( 2 ) - BigInt( 6 ) ) << endl;
1160 cout << "2 - 6 = " << ( BigInt( 2 ) - 6 ) << endl;
1161 cout << "0 - 5 = " << ( BigInt( 0 ) - 5 ) << endl;
1162 cout << "0 - 5 = " << ( BigInt( 0 ) - BigInt( 5 ) ) << endl;
1163 cout << "0 - -5 = " << ( BigInt( 0 ) - -5 ) << endl;
1164 cout << "0 - -5 = " << ( BigInt( 0 ) - BigInt( -5 ) ) << endl;
1165 cout << "10000 - 10000 = " << ( BigInt( 10000 ) - 10000 ) << endl;
1166 cout << "10000 - 10110 = " << ( BigInt( 10000 ) - 10110 ) << endl;
1167 cout << "4567 - 4568 = " << ( BigInt( 4567 ) - 4568 ) << endl;
1168 cout << "-4567 - -4568 = " << ( BigInt( -4567 ) - BigInt( -4568 ) ) << endl;
1169 cout << "999 - 9999 = " << ( BigInt( 999 ) - 9999 ) << endl;
1170 cout << "2000000000 + 2000000000 + 2000123456 = " << ( BigInt( 2000000000 ) + 2000000000 + BigInt( 2000123456 ) ) << endl;
1171 cout << "-34567 + 34568 = " << ( BigInt( -34567 ) + BigInt( 34568 ) ) << endl;
1172 cout << "10 - 1 = " << ( BigInt( 10 ) - 1 ) << endl;
1173 cout << "1 - 10 = " << ( BigInt( 1 ) - 10 ) << endl;
1174 cout << "Fib( 613 ) + Fib( 614 ) = " << (
1175 BigInt( "57535841731394367586444934959935162731893485882113791734636043664022186311322175066312007025864665068095897804714985049873571833" )
1177 BigInt( "93094947492730684688120544687306111880728698574224279139760379700550384193434187688727692133714165658764281830930007773906603177" )
1178 ) << endl;
1179 cout << endl;
1180 cout << "Multiplication/division:" << endl;
1181 cout << "128 * 512 = " << ( BigInt( 128 ) * 512 ) << endl;
1182 cout << "0 * 12345 = " << ( BigInt( 0 ) * 12345 ) << endl;
1183 cout << "-123 * 0 = " << ( BigInt( -123 ) * 0 ) << endl;
1184 cout << "-12345 * 1000001 = " << ( BigInt( -12345 ) * BigInt( 1000001 ) ) << endl;
1185 cout << "-1 * -1 = " << ( BigInt( -1 ) * BigInt( -1 ) ) << endl;
1186 cout << "1024 / 2 = " << ( BigInt( 1024 ) / 2 ) << endl;
1187 cout << "-525474 / -789 = " << ( BigInt( -525474 ) / -789 ) << endl;
1188 cout << "-81 / 27 = " << ( BigInt( -81 ) / 27 ) << endl;
1189 cout << "0 / -888 = " << ( BigInt( 0 ) / -888 ) << endl;
1190 cout << "1024 / 2 = " << ( BigInt( 1024 ) / BigInt( 2 ) ) << endl;
1191 cout << "-525474 / -789 = " << ( BigInt( -525474 ) / BigInt( -789 ) ) << endl;
1192 cout << "-81 / 27 = " << ( BigInt( -81 ) / BigInt( 27 ) ) << endl;
1193 cout << "0 / -888 = " << ( BigInt( 0 ) / BigInt( -888 ) ) << endl;
1194 BigInt q = 1023;
1195 int rem = q.divide( 2 );
1196 cout << "1023 / 2 = " << q << " + " << rem << "/2" << endl;
1197 q = 1219255159;
1198 rem = q.divide( 98765 );
1199 cout << "1219255159 / 98765 = " << q << " + " << rem << "/98765" << endl;
1200 q = 121;
1201 rem = q.divide( 11 );
1202 cout << "121 / 11 = " << q << " + " << rem << "/11" << endl;
1203 q = 1023;
1204 BigInt rem2 = q.divide( BigInt( 2 ) );
1205 cout << "1023 / 2 = " << q << " + " << rem2 << "/2" << endl;
1206 q = 1219255159;
1207 rem2 = q.divide( BigInt( 98765 ) );
1208 cout << "1219255159 / 98765 = " << q << " + " << rem2 << "/98765" << endl;
1209 q = 121;
1210 rem2 = q.divide( BigInt( 11 ) );
1211 cout << "121 / 11 = " << q << " + " << rem2 << "/11" << endl;
1212 q = 9999;
1213 rem2 = q.divide( BigInt( 9 ) );
1214 cout << "9999 / 9 = " << q << " + " << rem2 << "/9" << endl;
1215 cout << "1024 * 15.37 = " << BigInt( 1024 ) * 15.37l << endl;
1216 cout << "100 * 0.5 = " << BigInt( 100 ) * 0.5l << endl;
1217 cout << "123456789 * 0.123456789 = " << BigInt( 123456789 ) * 0.123456789l << endl;
1218 cout << "4286 * -0.5 = " << BigInt( 4286 ) * -0.5l << endl;
1219 cout << "29384723 * 1.0 = " << BigInt( 29384723 ) * 1.0l << endl;
1220 cout << "29384723 * -1.0 = " << BigInt( 29384723 ) * -1.0l << endl;
1221 cout << "3874928345 * 0.0 = " << BigInt( "3874928345" ) * 0.0l << endl;
1222 BigInt n = 1000;
1223 cout << "n = 1000: n*n*(8+n*(12+n*(3+n*n))) = " << n*n*(8+n*(12+n*(3+n*n))) << endl;
1225 cout << endl;
1226 cout << "Concatenation:" << endl;
1227 cout << "123,456 = " << ( BigInt( 123 ), 456 ) << endl;
1228 cout << "9999,55 = " << ( BigInt( 9999 ), BigInt( 55 ) ) << endl;
1229 cout << "0,1 = " << ( BigInt( 0 ), BigInt( 1 ) ) << endl;
1230 cout << "0,0 = " << ( BigInt( 0 ), 0 ) << endl;
1231 cout << "0,0 = " << ( BigInt( 0 ), BigInt( 0 ) ) << endl;
1232 cout << endl;
1233 cout << "Reflection:" << endl;
1234 BigInt x = 11;
1235 cout << "11 + 11 = " << ( x + x ) << endl;
1236 cout << "11 * 11 = " << ( x * x ) << endl;
1237 x += x;
1238 cout << "11 + 11 = " << x << endl;
1239 x *= x;
1240 cout << "22 * 22 = " << x << endl;
1241 cout << endl;
1242 cout << "Bitwise operations:" << endl;
1243 cout << "1 << 10 = " << ( 1 << 10 ) << " = " << ( BigInt( 1 ) << 10 ) << endl;
1244 cout << "-7 << 2 = " << ( -7 << 2 ) << " = " << ( BigInt( -7 ) << 2 ) << endl;
1245 cout << "3 << 8 = " << ( 3 << 8 ) << " = " << ( BigInt( 3 ) << 8 ) << endl;
1246 cout << "3 << 9 = " << ( 3 << 9 ) << " = " << ( BigInt( 3 ) << 9 ) << endl;
1247 cout << "1024 >> 9 = " << ( 1024 >> 9 ) << " = " << ( BigInt( 1024 ) >> 9 ) << endl;
1248 cout << "-1 >> 4 = " << (-1 >> 4) << " = " << ( BigInt( -1 ) >> 4 ) << endl;
1249 cout << endl;
1250 cout << "Input:" << endl;
1251 istringstream in( "1234567890" );
1252 in >> x;
1253 cout << "1234567890 = " << x << endl;
1254 istringstream in2( " \t\n\r01234 -00009876\t" );
1255 in2 >> x >> rem2;
1256 cout << "1234 = " << x << endl;
1257 cout << "-9876 = " << rem2 << endl;
1258 cout << endl;
1259 cout << "Exhaustion:" << endl;
1260 BigInt *table = new BigInt[10240];
1261 table[0] = 0; table[1] = 1;
1262 for( int i = 2; i < 10240; i++ )
1263 table[i] = table[i - 1] + table[i - 2];
1264 cout << "Fibonacci( 615 ) = " << table[615] << endl;
1265 cout << "Fibonacci( 10000 ) = " << table[10000] << endl;
1266 delete [] table;
1267 cout << endl;
1268 cout << "Logarithms" << endl;
1269 cout << "log2( 1024 ) = " << log2( BigInt( 1024 ) ) << endl;
1270 cout << "log2( 6 ) = " << log2( BigInt( 6 ) ) << endl;
1271 cout << "log( 0 ) = " << log( BigInt( 0 ) ) << endl;
1272 cout << "log10( 1000000 ) = " << log10( BigInt( 10000000 ) ) << endl;
1273 cout << "log( 1234567 ) = " << log( BigInt( 1234567 ) ) << endl;
1275 return 0;